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Abstract— The National Telecommunications and Information 

Administration (NTIA) General Model for estimating video 
quality and its associated calibration techniques were 
independently evaluated by the Video Quality Experts Group 
(VQEG) in their Phase II Full Reference Television (FR-TV) test.  
The NTIA General Model was the only video quality estimator 
that was in the top performing group for both the 525-line and 
625-line video tests.  As a result, the American National 
Standards Institute (ANSI) adopted the NTIA General Model 
and its associated calibration techniques as a North American 
Standard in 2003.  The International Telecommunication Union 
(ITU) has also included the NTIA General Model as a normative 
method in two Draft Recommendations.  This paper presents a 
description of the NTIA General Model and its associated 
calibration techniques.  The independent test results from the 
VQEG FR-TV Phase II tests are summarized, as well as results 
from eleven other subjective data sets that were used to develop 
the method. 

 
Index Terms— Video Quality, Image Quality, objective testing, 

subjective testing. 
 

I. INTRODUCTION 
HE advent of digital video compression, storage, and 
transmission systems exposed fundamental limitations of 

techniques and methodologies that have traditionally been 
used to measure video performance. Traditional performance 
parameters relied on the "constancy" of a video system’s 
performance for different input scenes. Thus, one could inject 
a test pattern or test signal (e.g., a static multi-burst), measure 
some resulting system attribute (e.g., frequency response), and 
be relatively confident that the system would respond 
similarly for other video material (e.g., video with motion).  
However, modern digital video systems adapt and change 
their behavior depending upon the input scene and the 
operational characteristics of the digital transmission system 
(e.g., bit-rate, error rate). Therefore, attempts to use input 
scenes that differ from what is actually used in-service (i.e., 
the actual user’s video) can result in erroneous and misleading 
results.   
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NTIA pioneered perception-based video quality 
measurement in 1989 [1].  Subsequently, other organizations 
have performed major research efforts [2]-[10].  NTIA’s 
research has focused on developing technology independent 
parameters that model how people perceive video quality.  
These parameters have been combined using linear models to 
produce estimates of video quality that closely approximate 
subjective test results.  With the assistance of other 
organizations (e.g., VQEG), NTIA has collected data from 18 
independent video quality experiments.  The resulting 2944 
subjectively rated video sequences were all sampled according 
to ITU-R Recommendation BT.6011 [11].  This wide variety 
of input scenes and transmission systems has enabled NTIA to 
develop robust, technology independent parameters and video 
quality models.  

This paper provides a description of the National 
Telecommunications and Information Administration (NTIA) 
General Model for estimating video quality and its associated 
calibration techniques (e.g., estimation and correction of 
spatial alignment, temporal alignment, and gain/offset errors).  
The General Model was metric H in the Video Quality 
Experts Group (VQEG) Phase II Full Reference Television 
(FR-TV) tests [12].  These algorithms have been standardized 
by the American National Standards Institute (ANSI) in the 
updated version of T1.801.03 [13], and have been included as 
a normative method in two International Telecommunication 
Union (ITU) recommendations [14][15]. 

The General Model was designed to be a general purpose 
video quality model (VQM) for video systems that span a very 
wide range of quality and bit rates.  Extensive subjective and 
objective tests were conducted to verify the performance of 
the General Model before it was submitted to the VQEG 
Phase II test.  While the independent VQEG Phase II FR-TV 
tests only evaluated the performance of the General Model on 
MPEG-2 and H.263 video systems, the General Model was 
developed using a wide variety of video systems and thus 
should work well for many other types of coding and 
transmission systems (e.g., bit rates from 10 kbits/s to 45 
Mbits/s, MPEG-1/2/4, digital transmission systems with 
errors, analog transmission systems, and tape-based systems, 
utilizing both interlace and progressive video). 

1 A common 8-bit video sampling standard that samples the luminance (Y) 
channel at 13.5 MHz, and the blue and red color difference channels (CB and 
CR) at 6.75 MHz.  If 8 bits are used to uniformly sample the Y signal, Rec. 
601 specifies that reference black be sampled at 16 and reference white at 235. 
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The General Model utilizes reduced-reference technology 
[16] and provides estimates of the overall impressions of 
video quality (i.e., mean opinion scores, as produced by 
panels of viewers).  Reduced-reference measurement systems 
utilize low-bandwidth features that are extracted from the 
source and destination video streams.  Thus, reduced-
reference systems can be used to perform real-time in-service 
quality measurements (provided an ancillary data channel is 
available to transmit the extracted features), a necessary 
attribute for tracking dynamic changes in video quality that 
result from time varying changes in scene complexity and/or 
transmission systems.  The General Model utilizes reduced-
reference parameters that are extracted from optimally-sized 
spatial-temporal (S-T) regions of the video sequence.  The 
General Model requires an ancillary data channel bandwidth 
of 9.3% of the uncompressed video sequence, and the 
associated calibration techniques require an additional 4.7%. 

The General Model and its associated calibration 
techniques comprise a complete automated objective video 
quality measurement system (see Fig. 1).  The calibration of 
the original and processed video streams includes spatial 
alignment, valid region estimation, gain & level offset 
calculation, and temporal alignment.  VQM calculation 
involves extracting perception-based features, computing 
video quality parameters, and combining parameters to 
construct the General Model.  This paper will first provide a 
summary description of each process (the reader is referred to 
[17] for a more detailed description).  Finally, test results from 
eleven subjective data sets and the independent VQEG FR-TV 
Phase II tests will be presented. 

 
Fig. 1.  Block Diagram of entire VQM  

II. SPATIAL ALIGNMENT 
The spatial alignment process determines the horizontal and 

vertical spatial shift of the processed video relative to the 
original video.  The accuracy of the spatial alignment 
algorithm is to the nearest 0.5 pixel for horizontal shifts and to 
the nearest line for vertical shifts.  After the spatial alignment 

has been calculated, the spatial shift is removed from the 
processed video stream (e.g., a processed image that was 
shifted down is shifted back up).   

For interlaced video, this may include reframing of the 
processed video stream as implied by comparison of the 
vertical field one and field two shifts.  Reframing occurs when 
either the earlier field moves into the later field and the later 
field moves into the earlier field of the next frame (one-field 
delay), or when the later field moves into the earlier field and 
the earlier field of the next frame moves into the later field of 
the current frame (one-field advance).  Reframing impacts 
spatial alignment for both 525-line video (e.g., NTSC) and 
625-line video (e.g., PAL) identically and causes the field-two 
vertical shift (in field lines) to be one greater than the field-
one vertical shift (in field lines).  

Spatial alignment must be determined before the processed 
valid region (abbreviated as PVR and defined as that portion 
of the processed video image which contains valid picture 
information), gain and level offset, and temporal alignment.  
Specifically, each of those quantities must be computed by 
comparing original and processed video content that has been 
spatially registered.  If the processed video stream were 
spatially shifted with respect to the original video stream and 
this spatial shift were not corrected, then these other 
calibration estimates would be corrupted.  Unfortunately, 
spatial alignment cannot be correctly determined unless the 
PVR, gain and level offset, and temporal alignment are also 
known.  The interdependence of these quantities produces a 
“chicken or egg” measurement problem.  Calculation of the 
spatial alignment for one processed field requires that one 
know the PVR, gain and level offset, and the closest matching 
original field.  However, one cannot determine these 
quantities until the spatial shift is found.  A full exhaustive 
search over all variables would require a tremendous number 
of computations if there were wide uncertainties in the above 
quantities.  Specifying the above quantities too narrowly could 
result in spatial alignment errors. The solution presented here 
performs an iterative search to find the closest matching 
original frame for each processed frame.2   

An initial baseline (i.e., starting) estimate for vertical shift, 
horizontal shift, and temporal alignment is computed for one 
processed frame using a multi-step search.  The first step is a 
broad search, over a very limited set of spatial shifts, whose 
purpose is to get close to the correct matching original frame.  
Gain compensation is not considered in the broad search, and 
PVR is set to exclude the over-scan portion of the picture 
which, in most cases, will eliminate invalid video from being 
used.  The second step is a broad search for the approximate 
spatial shift, performed using a more limited range of original 
frames.  The broad search for spatial shift covers 
approximately two dozen spatial shifts.  Fewer downward 

 
2 When operating on interlaced video, all operations will consider video 

from each field separately; when operating on progressive video, all 
operations will consider the entire video frame simultaneously.  For 
simplicity, the calibration algorithms will be entirely described for progressive 
video, this being the simpler case. 
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shifts are considered, since these are less likely to be 
encountered in practice.  The third step performs localized 
spatial-temporal searches to fine-tune the spatial and temporal 
estimates.  Each fine search includes a small set of spatial 
shifts centered around the current spatial alignment estimate 
and just three frames temporally, centered around the current 
best matching original frame.  The zero shift condition is 
included as a safety check that helps prevent the algorithm 
from wandering and converging to a local minimum.  This 
third step iterates up to five times.  If these repeated fine 
searches fail to find a stable result (i.e., a local minimum), the 
above procedure is repeated using a different processed frame.  
This produces a baseline estimate that will be updated 
periodically, as described below. 

The spatial alignment algorithm calculates the spatial 
alignment for each of a series of processed frames at some 
specified frequency (e.g., one frame every half-second).  
Using the baseline estimate as a starting point, the algorithm 
performs alternate fine searches (as described above) and 
estimations of the luminance gain and level offset.  To 
calculate the luminance gain and level offset, the mean and 
standard deviation of the original and processed frames are 
compared, using the current spatial and temporal alignment 
estimates.  This simple calculation has a robust performance in 
the presence of alignment errors.  If the baseline estimate is 
correct or very nearly correct, three fine searches will 
normally yield a stable result.  If a stable result is not found, 
most likely the spatial shift is correct but the temporal shift 
estimate is off (i.e., the current estimate of temporal shift is 
more than two frames away from the true temporal shift).  In 
this case, a broad search for the temporal shift is conducted 
that includes the current best estimate of spatial shift.  This 
broad search will normally correct the temporal shift estimate.  
When the broad search for the temporal shift completes, its 
output is used as the starting point, and up to five repeated 
fine searches are performed, alternating with luminance gain 
and level offset calculations.  If this second repeated fine 
search fails to find a stable result, then spatial alignment has 
failed for this frame.  If a stable result has been found for this 
frame, the spatial shifts (i.e., horizontal and vertical) are stored 
and the baseline estimate is updated. 

For some processed frames, the spatial alignment algorithm 
could fail.  Usually, when the spatial alignment is incorrectly 
estimated for a processed frame, the ambiguity is due to 
characteristics of the scene.  Consider, for example, a digitally 
created progressive scene containing a pan to the left.  
Because the pan was computer generated, this scene could 
have a horizontal pan of exactly two pixels every frame.  
From the spatial alignment search algorithm’s point of view, it 
would be impossible to differentiate between the correct 
spatial alignment computed using the matching original frame, 
and a two pixel horizontal shift computed using the frame that 
occurs one frame prior to the matching original frame.  For 
another example, consider an image consisting entirely of 
digitally perfect black and white vertical lines.  Because the 
image contains no horizontal lines, the vertical shift is entirely 

ambiguous.  Because the pattern of vertical lines repeats, the 
horizontal shift is ambiguous, two or more horizontal shifts 
being equally acceptable.   

Therefore, the iterative search algorithm should be applied 
to a sequence of processed frames.  The individual estimates 
of horizontal and vertical shifts from multiple processed 
frames are then median-filtered to produce more robust 
estimates.  Using the 50th percentile point allows the most 
likely horizontal and vertical shift to be chosen.  This 
algorithm consistently produces a horizontal spatial alignment 
accuracy that is good to the nearest 0.5 pixels.3  Spatial shift 
estimates from multiple sequences or scenes may be further 
combined to produce an even more robust estimate for the 
Hypothetical Reference Circuit (HRC)4 being tested, assuming 
that the spatial shift is constant for all scenes passing through 
the HRC.   

The spatial alignment algorithm described above requires a 
relatively high ancillary data channel bandwidth, due to the 
pixel-by-pixel comparison of original and processed frames.  
This could impact the design of an in-service quality 
monitoring application.  Fortunately, each piece of video 
transmission equipment (i.e., encoder, decoder, or analog 
transmission) will normally have one constant spatial 
alignment.  If the hardware had a changing or variable spatial 
alignment, the transmitted video would appear to move up and 
down – an unacceptable degradation that would be quickly 
addressed by the manufacturer.  

III. PROCESSED VALID REGION (PVR) 
Video sampled according to ITU-R Recommendation 

BT.601 [11], henceforth abbreviated as Rec. 601, may have a 
border of pixels and lines that does not contain a valid picture.  
The original video from the camera may only fill a portion of 
the Rec. 601 frame.  A digital video system that utilizes 
compression may further reduce the area of the picture in 
order to save transmission bits.  If the non-transmitted pixels 
and lines occur in the over-scan area of the television picture, 
the typical end-user should not notice the missing lines and 
pixels.  If these non-transmitted pixels and lines occur in the 
displayed picture area, the viewer may notice a black border 
around the displayed images, since the video system will 
normally insert black into this non-transmitted picture area.  
Video systems (particularly those that perform low-pass 
filtering) may exhibit a ramping up from the black border to 
the picture area.  These transitional effects most often occur at 
the left and right sides of the image but can also occur at the 
top or bottom.  Occasionally, the processed video may contain 
several lines of corrupted video at the top or bottom that may 
not be visible to the viewer (e.g., VHS tape recorders can 
corrupt several lines at the bottom of the picture in the over-

 
3 Spatial alignment to the nearest 0.5 pixels is sufficient for the video 

quality measurements described herein.   
4 The term HRC is used here to denote one instantiation of a video 

transmission system which may include an encoder, a digital transmission 
system, and a decoder.  HRC is a generic term commonly used by standards 
bodies to protect the anonymity of video equipment suppliers. 
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scan area).   
To prevent non-picture areas from influencing the VQM 

measurements, these areas are excluded from the VQM 
measurement.  Since the behavior of some video systems is 
scene dependent, the valid region should ideally be calculated 
using actual video streams.  In this case, PVR should be 
calculated for each scene separately.  After PVR has been 
calculated, the invalid pixels are discarded from the original 
and processed video sequences. 

The automated valid region algorithm estimates the valid 
region of the processed video stream so that subsequent 
computations do not consider corrupted lines at the top and 
bottom of the Rec. 601 frame, black border pixels, or 
transitional effects where the black border meets the picture 
area.  The core algorithm starts with an assumption that the 
outside edges of each processed frame contain invalid video.  
The extent of this invalid region is set empirically, based upon 
observations of actual video systems.  For 525-line video 
sampled according to Rec. 601, the default invalid region 
excludes 6 pixels/lines at the top, left and right, and 4 lines at 
the bottom.  The PVR algorithm begins by setting the PVR to 
exclude this default invalid region.  The pixels immediately 
inside the current valid region estimate are then examined.  If 
the average pixel value is black or ramping up slowly from 
black, then the valid region estimate is accordingly decreased 
in size.  By repeating this examination, the valid region is 
iteratively diminished in size.   

The stopping conditions can be fooled by scene content.  
For example, an image that contains genuine black at the left 
side (i.e., black that is part of the scene) will cause the core 
algorithm to conclude that the left-most valid column of video 
is farther toward the middle of the image than it ought to be.  
For that reason, the core algorithm is applied to multiple 
images from the processed video sequence and the largest 
observed PVR (with some safety margin added) is used for the 
final PVR estimate.  The coordinates of the PVR are 
transformed via the spatial alignment results, so that the PVR 
specifies the portion of the original video that remains valid.   

This automated valid region algorithm works well to 
estimate the valid region of most scenes.  Due to the nearly 
infinite possibilities for scene content, the algorithm takes a 
conservative approach to estimation of the valid region.  A 
manual examination of valid region would quite likely choose 
a larger region.  Conservative valid region estimates are more 
suitable for an automated video quality measurement system, 
because discarding a small amount of video will have little 
impact on the quality estimate and in any case this video 
usually occurs in the over-scan portion of the video.  On the 
other hand, including corrupted video in the video quality 
calculations may have a large impact on the quality estimate. 

The valid region algorithm can also be applied to the 
original video sequence.  The resulting original valid region 
(OVR) increases the accuracy of the processed valid region 
calculation, by providing a maximal bound on the PVR.  

IV. GAIN & LEVEL OFFSET 
A prerequisite for performing gain and level offset 

calibration is that the original and processed images be 
spatially registered.  The original and processed images must 
also be temporally registered, which will be addressed later.  
Gain and level offset calibration can be performed on either 
fields or frames as appropriate.   

The method presented here makes the assumption that the 
Rec. 601 Y, CB, and CR signals each have an independent gain 
and level offset.  This assumption will in general be sufficient 
for calibrating component video systems (e.g., Y, R-Y, B-Y).  
However, in composite or S-video systems, it is possible to 
have a phase rotation of the chrominance information since 
the two chrominance components are multiplexed into a 
complex signal vector with amplitude and phase.  The 
algorithm presented here will not properly calibrate video 
systems that introduce a phase rotation of the chrominance 
information (e.g., the hue adjustment on a television set).  In 
addition, since a linear estimation algorithm is utilized, 
excessive gains that cause pixel levels to be clipped will cause 
estimation errors unless the algorithm is modified to allow for 
this effect.  

The valid regions of the original and processed frames are 
divided into small, square sub-regions, or blocks.  The mean 
over space of the [Y, CB, CR] samples for each corresponding 
original and processed sub-region are computed to form 
spatially sub-sampled images.  To temporally register a 
processed frame (with spatial shift held constant), the standard 
deviation of each (original minus processed) difference image 
is computed using the sub-sampled Y luminance frames.  For 
a given processed frame, the temporal shift that produces the 
smallest standard deviation (i.e., most cancellation with the 
original) is chosen as the best match.  A first order linear fit is 
used to compute the relative gain and offset between the sub-
sampled original and processed frames.  This linear fit is 
applied independently to each of the three channels:  Y, CB, 
and CR.   

The algorithm described above should be applied to 
multiple matching original and processed frame pairs 
distributed at regular intervals throughout the video sequence.  
A median filter is then applied to the six time histories of the 
level offsets and gains to produce average estimates for the 
scene.  If the level offset and gain is constant for all scenes 
that have passed through a given HRC, then measurements 
performed on each scene can be filtered (across all the scenes) 
to increase robustness and accuracy.  The overall HRC level 
offset and gain results can then be used to compensate all of 
the processed video for that HRC. 

Although gain and level offsets are calculated for the CB 
and CR channels, these correction factors are not applied.  The 
General Model utilizes only the luminance or Y channel gain 
and level offset correction factors.  Changes to the CB and CR 
color channels are considered impairments for which the 
system under test should be penalized. 
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V. TEMPORAL ALIGNMENT 
Modern digital video communication systems typically 

require several tenths of a second to process and transmit the 
video from the sending camera to the receiving display.  
Excessive video delays impede effective two-way 
communication.  Therefore, objective methods for measuring 
end-to-end video communications delay are important to end-
users and service providers for specification and comparison 
of interactive services.  Video delay can depend upon dynamic 
attributes of the original scene (e.g., spatial detail, motion) and 
video system (e.g., bit-rate).  For instance, scenes with large 
amounts of motion can suffer more video delay than scenes 
with small amounts of motion. Thus, video delay 
measurements should ideally be made in-service to be truly 
representative and accurate.  Estimates of video delay are 
required to temporally align the original and processed video 
streams before making quality measurements. 

Some video transmission systems may provide time 
synchronization information (e.g., original and processed 
frames may be labeled with some kind of timing information).  
In general, however, time synchronization between the 
original and processed video streams must be measured.  This 
section presents a technique for estimating video delay based 
upon the original and processed video frames.  The technique 
is “frame-based” in that it works by correlating lower 
resolution images, sub-sampled in space and extracted from 
the original and processed video streams.  This frame-based 
technique estimates the delay of each frame or field (for 
interlaced video systems).  These individual estimates are 
combined to estimate the average delay of the video sequence. 

To reduce the influence of distortions on temporal 
alignment, original and processed images are spatially sub-
sampled and then normalized to have unit variance.  Each 
individual processed image is then temporally registered using 
the technique presented for the gain & level offset algorithm 
(i.e., find the original image that minimizes the standard 
deviation of the difference between the original and processed 
images).  This locates the most similar original image for each 
processed image.   

However, it is not the identity of the original image that is 
of interest, but rather the relative delay between the original 
and processed images (e.g., in seconds or frames).  The delay 
measurements from a series of images are combined into a 
histogram, which is then smoothed.  If a bin near one end of 
the histogram contains a large number count, then the 
temporal alignment uncertainty was too small and the entire 
temporal alignment algorithm should be re-run with a larger 
temporal uncertainty.  Otherwise, the maximum smoothed 
histogram bin indicates the best average temporal alignment 
for the scene.  This counting scheme produces an accurate 
estimate for the average delay of a video sequence. 

Unlike the previous calibration algorithms, the temporal 
alignment algorithm examines every processed video frame.  
Some of these individual temporal alignment measurements 
may be incorrect but those errors will tend to be randomly 

distributed.  Patterns in the histogram can provide insights into 
the system under test, such as an indication of changing or 
variable delay.  Delay measurements from still and nearly 
motionless portions of the scene are not used, since the 
original images are nearly identical to each other.     

The delay indicated at the final stage of the algorithm may 
be different from the delay a viewer might choose when 
aligning the scenes by eye.  Viewers tend to focus on motion, 
aligning the high motion parts of the scene, where the frame-
based algorithm chooses the most often observed delay over 
all of the frames that were examined.  These overall delay 
histograms are then examined to determine the extent and 
statistics of any variable video delay present in the HRC. 

VI. AN OVERVIEW OF FEATURE AND PARAMETER 
CALCULATION METHODS 

A quality feature in the context of this algorithm is defined 
as a quantity of information associated with, or extracted 
from, a spatial-temporal sub-region of a video stream (either 
original or processed).  The feature streams are a function of 
space and time that characterize perceptual changes in the 
spatial, temporal, and chrominance properties of video 
streams.  By comparing features extracted from the calibrated 
processed video with features extracted from the original 
video, quality parameters can be computed that are indicative 
of perceptual changes in video quality.   

Viewed conceptually, all of the features used by the 
General Model perform the same steps.  A perceptual filter is 
applied to the video stream to enhance some property of 
perceived video quality, such as edge information.  After this 
perceptual filtering, features are extracted from spatial-
temporal (S-T) sub-regions using a mathematical function 
(e.g., standard deviation).  Finally, a perceptibility threshold is 
applied to the extracted features. 

All perceptual filters operate on frames within a calibrated 
video sequence.  Thus, the pixels in original and processed 
images outside of the PVR have been discarded, the processed 
sequence has been spatially registered, the processed 
luminance Y images have been gain/level offset compensated, 
and the processed sequence has been temporally registered.  
All features operate independently of image size (i.e., S-T 
region size does not change when the image size changes).5  

Each perceptual filter distinguishes some aspect of video 
quality.  The luminance image plane contains information 
pertinent to edge business and noise.  An edge enhanced 
version of the luminance Y image plane more accurately 
identifies blurring, blocking, and other large-scale edge 
effects.  The color image planes, CB and CR, are useful for 
identifying hue impairments and digital transmission errors.  
Time differencing consecutive luminance Y image planes 
highlights jerky or unnatural motion.  

After the original and processed video streams have been 
 

5 This independence of S-T region size and image size has only been tested 
for standard definition television, including CIF and QCIF sequences.  We 
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perceptually filtered, the video streams are divided into 
abutting S-T regions.  S-T region sizes are described by (1) 
the number of pixels horizontally, (2) the number of frame 
lines vertically, and (3) the time duration of the region.  Since 
the processed video has been calibrated, for each processed S-
T region there exists a corresponding original S-T region.  
Features are extracted from each of these S-T regions using a 
simple mathematical function.  The two functions that work 
best are mean, which measures the average pixel value, and 
standard deviation, which estimates the spread of pixel values.  
After feature extraction, the temporal axis no longer relates to 
individual frames.  The temporal extent of the S-T regions 
determines the sample rate of the feature stream.  This sample 
rate cannot exceed the frame rate.   

Finally, some feature values are clipped to prevent them 
from measuring impairments that are imperceptible.  This 
clipping is of the form: 

( thresholdffclip ,max= )  (1) 

where f is the feature before clipping, threshold is the 
clipping threshold, and fclip is the feature after clipping.  Since 
clipping is applied to both the original and processed feature 
streams, this clipping serves to reduce sensitivity to 
imperceptible impairments. 

Where quality features quantify some perceptual aspect of 
one video stream, quality parameters compare original and 
processed features to obtain an overall measure of video 
distortion.  Viewed conceptually, all of the parameters used by 
the General Model perform the same steps.  First, the 
processed feature value for each S-T region is compared to the 
corresponding original feature value using comparison 
functions that emulate the perception of impairments.  Next, 
perception-based error-pooling functions are applied across 
space and time.  Error pooling across space will be referred to 
as spatial collapsing, and error pooling across time will be 
referred to as temporal collapsing.  Sequential application of 
the spatial and temporal collapsing functions to the streams of 
S-T quality parameters produces single-value quality 
parameters for the entire video sequence, which is nominally 8 
to 10 seconds in duration. 6  The final space-time collapsed 
parameter values may also be scaled and clipped to account 
for nonlinearities and to better match the parameter’s 
sensitivity to impairments with the human perception of those 
impairments.   

The perceptual impairment at each S-T region is calculated 
using comparison functions that have been developed to 
model visual masking of spatial and temporal impairments.  
Some features use a comparison function that performs a 
simple Euclidean distance between two original and two 
processed feature streams. 

2
22
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expect high definition television (HDTV) to exhibit this independence as well, 
but this has not been tested.  

6 Most of the video sequences that were used to develop the General Model 
were from 8 to 10 seconds in duration.  

However, most features use either the ratio comparison 
function  

oop fffp /)( −=  (3) 

or the log comparison function   
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where fo and fo2 are original feature values; fp and fp2 are the 
corresponding processed feature values.   

These visual masking functions imply that impairment 
perception is inversely proportional to the amount of localized 
spatial or temporal activity that is present.  In other words, 
spatial impairments become less visible as the spatial activity 
increases (i.e., spatial masking), and temporal impairments 
become less visible as the temporal activity increases (i.e., 
temporal masking).   

The ratio and log comparison functions produce a mixture 
of positive and negative values, where positive numbers 
indicate gains, and negative numbers indicate losses.  Greater 
measurement accuracy can be obtained by examining losses 
and gains separately.  The fundamental reason is that humans 
generally react more negatively to additive impairments (e.g., 
blocking which produces extra edges) than subtractive 
impairments (e.g., blurring which produces a loss of edge 
sharpness) and hence losses and gains must be given different 
weights in the quality estimator.  Therefore, the ratio and log 
comparison functions are always followed by either a loss 
function (i.e., replace positive values with zero) or a gain 
function (i.e., replace negative values with zero).   

The parameters from the S-T regions form three-
dimensional arrays spanning the temporal axis and two spatial 
dimensions (i.e., horizontal and vertical).  For the spatial 
collapsing step, impairments from the S-T regions with the 
same time index are pooled using a spatial collapsing function 
(e.g., mean, standard deviation, or rank-sorting with percent 
threshold selection).  Spatial collapsing yields a time history 
of parameter values.  Extensive investigations performed by 
NTIA revealed that the optimal spatial collapsing function 
often involves some form of worst case processing, such as 
taking the average of the worst 5% of the distortions observed 
at that point in time.  This is because localized impairments 
tend to draw the focus of the viewer, making the worst part of 
the picture the predominant factor in the subjective quality 
decision.  

The parameter time history results from the spatial 
collapsing function are next pooled using a temporal 
collapsing function to produce an objective parameter for the 
video sequence.  Viewers use a variety of temporal collapsing 
functions.  For example, the mean over time is indicative of 
the average quality that is observed during the time period.  
The 90% level for a gain parameter’s time history is indicative 
of the worst additive transient impairment that is observed 
(e.g., digital transmission errors may cause a 1 to 2 second 
disturbance in the processed video).     

The all-positive or all-negative temporally collapsed 
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parameters may be scaled to account for nonlinear 
relationships between the parameter value and perceived 
quality.  It is preferable to remove any nonlinear relationships 
before building the video quality models, since the linear 
least-squares algorithm will be used to determine the optimal 
parameter weights.  Two nonlinear scaling functions that 
might be applied are the square root function, and the square 
function.  If the square root function is applied to an all-
negative parameter, the parameter is first made all positive 
(i.e., absolute value taken).   

Finally, a clipping function might be applied to reduce the 
parameter’s sensitivity to small amounts of impairment.  This 
clipping function for positive parameters is: 

⎩
⎨
⎧

−
≤

=
otherwise

    if0
'

tp
tp

p  (5) 

where t is the threshold. 
When designing individual parameters, the specific details 

of each step are established by analyzing subjectively rated 
video.  For example, threshold from equation (1) and p from 
equation (5) are set to values that maximize the correlation 
between the quality parameter and subjective video quality 
ratings.  Thus, the specific details of the General Model 
parameters were chosen to best emulate human perception.  

VII. GENERAL MODEL PARAMETERS 
The General Model contains seven independent parameters.  

Four parameters are based on features extracted from spatial 
gradients of the Y luminance component, two parameters are 
based on features extracted from the vector formed by the two 
(CB, CR) chrominance components, and one parameter is 
based on the product of features that measure contrast and 
motion, both of which are extracted from the Y luminance 
component.  The seven parameters are computed as described 
below. 

A. Parameter “si_loss” 
Parameter si_loss detects a decrease or loss of spatial 

information (e.g., blurring).  This parameter uses a 13 pixel 
spatial information filter (SI13) that has a peak response at 
approximately 4.5 cycles/degree (when Rec. 601 video is 
viewed at a distance of 6 times picture height).  The SI13 filter 
was specifically developed to measure perceptually significant 
edge impairments [17].  An alternate method for extracting 
edges is the Sobel filter, but the 3 pixel Sobel filter detects 
details so fine that people may not care if they are blurred.  
SI13 utilizes 13 pixel by 13 pixel horizontal and vertical filter 
masks.  These two filter masks are created by horizontal and 
vertical replication of the following vector: 

[-.0052625, -.0173446, -.0427401, -.0768961, -.0957739, -
.0696751, 0, .0696751, .0957739, .0768961, .0427401, 
.0173446, .0052625] 

The horizontal and vertical filters are separately applied to 
the luminance image.  The resulting filtered images (IH and IV) 
are combined into a single image (ISI13) using Euclidean 
distance (i.e., square root of the sum of the squares).   

The si_loss parameter is calculated by performing the 
following seven steps: 
1) Apply the SI13 filter to each luminance image.   
2) Divide each video sequence into 8 pixel x 8 line x 0.2 

second S-T regions.  This is the optimal S-T region size 
for the si_loss parameter [18].  

3) Compute the standard deviation of each S-T region. 
4) Apply a perceptibility threshold, replacing values less than 

12 with 12. 
5) Compare original and processed feature streams (each 

computed using steps 1 through 4) using the ratio 
comparison function (see equation 3) followed by the loss 
function. 

6) Spatially collapse by computing the average of the worst 
(i.e., most impaired) 5% of S-T blocks for each 0.2 second 
slice of time.  

7) Temporally collapse by sorting values in time and 
selecting the 10% level.  Since the parameter values are all 
negative, this is a form of worst-case temporal processing.  

B. Parameter “hv_loss” 
The hv_loss parameter detects a shift of edges from 

horizontal & vertical orientation to diagonal orientation, such 
as might be the case if horizontal and vertical edges suffer 
more blurring than diagonal edges.  This parameter uses the 
horizontally and vertically filtered images (H and V) output 
from the SI13 filter.  Two new perceptually filtered images are 
created: one contains horizontal and vertical edges (HV) and 
the other contains diagonal edges (HVBAR, or complement of 
HV).  An edge angle is computed for each pixel by taking the 
four-quadrant arctangent of the SI13 filtered H and V pixel 
values.  The HV image contains values where the angle is 
within 0.225 radians of horizontal or vertical, and zero 
otherwise.  The HVBAR image contains values where the angle 
indicates a diagonal edge, and zero otherwise.    Pixels with an 
SI13 magnitude value less than 20 are not used (i.e., replaced 
with zero), because the angle calculation is unreliable.    

The hv_loss parameter is calculated by performing the 
following nine steps: 
1) Apply the HV and HVBAR perceptual filters to each 

luminance plane. 
2) Divide each of the HV and HVBAR video sequences into 8 

pixel x 8 line x 0.2 second S-T regions.  This is the 
optimal S-T region size for the hv_loss parameter [18]. 

3) Compute the mean of each S-T region. 
4) Apply a perceptibility threshold, replacing values less than 

3 with 3. 
5) Compute the ratio (HV / HVBAR). 
6) Compare original and processed feature streams (each 

computed using steps 1 through 5) using the ratio 
comparison function (see equation 3) followed by the loss 
function. 

7) Spatially collapse by computing the average of the worst 
5% of blocks for each 0.2 second slice of time.  

8) Temporally collapse by taking the mean over all time 
slices.  

9) Square the parameter (i.e., non-linear scaling), and clip at 
a minimum value of 0.06 (see equation 5). 
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Due to the non-linear scaling, the values associated with 
parameter hv_loss are all positive, rather than being all 
negative as is the case for the other loss metric, si_loss.  

C. Parameter “hv_gain” 
This parameter detects a shift of edges from diagonal to 

horizontal & vertical, such as might be the case if the 
processed video contains tiling or blocking artifacts. 
1) Perform steps 1 through 5 from parameter hv_loss. 
2) Compare original and processed feature streams using the 

log comparison function (see equation 4) followed by the 
gain function. 

3) Spatially collapse by computing the average of the worst 
5% of blocks for each 0.2 second slice of time.  

4) Temporally collapse by taking the mean over all time 
slices. 

D. Parameter “chroma_spread” 
This parameter detects changes in the spread of the 

distribution of two-dimensional color samples.   
1) Divide the CB and CR color planes into separate 8 pixel x 8 

line x 1 frame S-T regions. 
2) Compute the mean of each S-T region.  Multiple the CR 

means by 1.5 to increase the perceptual weighting of the 
red color component in the next step. 

3) Compare original and processed feature streams CB and 
CR using Euclidean distance (see equation 2). 

4) Spatially collapse by computing the standard deviation of 
blocks for each 1-frame slice of time. 

5) Temporally collapse by sorting the values in time and 
selecting the 10% level, and then clip at a minimum value 
of 0.6.  Since all values are positive, this represents a best-
case processing temporally.  Thus, chroma_spread 
measures color impairments that are nearly always 
present. 

Steps 1 and 2 essentially sub-sample the CB and CR image 
planes.  Just as si_loss, hv_loss, and hv_gain examine edges 
containing enough pixels to be perceptually significant, 
chroma_spread performs coherent integration (i.e., CB and 
CR treated as a vector) of color samples over an area large 
enough to have significant perceptual impact. 

E. Parameter “si_gain”  
This is the only quality improvement parameter in the 

model.  The si_gain parameter measures improvements to 
quality that result from edge sharpening or enhancements.  
The si_gain parameter is calculated by performing the 
following five steps: 
1) Perform steps 1 through 3 from si_loss.  
2) Apply a perceptibility threshold, replacing values less than 

8 with 8. 
3) Compare original and processed feature streams (each 

computed using steps 1 and 2) using the log comparison 
function paired with the gain function. 

4) Spatially and temporally collapse by computing the 
average of all blocks, and then clip at a minimum value of 
0.004.  These steps estimate the average overall level of 
edge enhancement that is present.  

5) Set all values greater than 0.14 equal to 0.14 to prevent 
excessive quality improvements of more than about one-
third of a quality unit when multiplied by the parameter 
weight (see section VIII).  One-third of a quality unit is 
the maximum improvement observed in the subjective 
data that was used to develop this parameter.  Thus, an 
HRC will only be rewarded for a small amount of edge 
enhancement.  The si_gain parameter is a relative 
enhancement in quality for systems that perform contrast 
enhancement with respect to systems that don’t perform 
contrast enhancement.  In Section VIII, VQM will be 
clipped to prevent the si_gain parameter from producing 
processed quality estimates better than the original.   

F. Parameter “ct_ati_gain” 
The perceptibility of spatial impairments can be influenced 

by the amount of motion that is present.  Likewise, the 
perceptibility of temporal impairments can be influenced by 
the amount of spatial detail that is present.  A feature derived 
from the product of contrast information and temporal 
information can be used to partially account for these 
interactions.  The ct_ati_gain metric is computed as the 
product of a contrast feature, measuring the amount of spatial 
detail, and a temporal information feature, measuring the 
amount of motion present in the S-T region.  Impairments will 
be more visible in S-T regions that have a low product than in 
S-T regions that have a high product.  This is particularly true 
of impairments like noise and error blocks.  ct_ati_gain 
identifies moving-edge impairments that are nearly always 
present, such as edge noise.   
1) Apply the “absolute value of temporal information” (ATI) 

motion detection filter to each luminance plane.   ATI is 
the absolute value of a pixel-by-pixel difference between 
the current and previous video frame. 

2) Divide each video sequence into 4 pixel x 4 line x 0.2 
second S-T regions.   

3) Compute the standard deviation of each S-T region.   
4) Apply a perceptibility threshold, replacing values less than 

3 with 3. 
5) Repeat steps 2 through 4 on the Y luminance video 

sequence (without perceptual filtering) to form “contrast” 
feature streams. 

6) Multiply the contrast and ATI feature streams. 
7) Compare original and processed feature streams (each 

computed using steps 1 through 6) using the ratio 
comparison function (see equation 3) followed by the gain 
function. 

8) Spatially collapse by computing the mean of each 0.2 
second slice of time.  

9) Temporally collapse by sorting values in time and 
selecting the 10% level.  The parameter values are all 
positive, so this temporal collapsing function is a form of 
best-case processing, detecting impairments that are nearly 
always present.  

G. Parameter “chroma_extreme” 
This feature uses the same color features as the 

chroma_spread metric, but different spatial-temporal 
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collapsing functions.  Chroma_extreme detects severe 
localized color impairments, such as those produced by digital 
transmission errors. 
1) Perform steps 1 through 3 from chroma_spread. 
2) Spatially collapse by computing for each slice of time the 

average of the worst 1% of blocks (i.e., rank-sorted values 
from the 99% level to the 100% level), and subtract from 
that result the 99% level.  This identifies very bad 
distortions that impact a small portion of the image.  

3) Temporally collapse by computing standard deviation of 
the results from step 2. 

VIII. GENERAL MODEL 
This section describes how to compute the General Model 

using the calculated parameter values.  The General Model is 
optimized to achieve maximum objective to subjective 
correlation using a wide range of video quality and bit rates.  
The General Model has objective parameters for measuring 
the perceptual effects of a wide range of impairments such as 
blurring, block distortion, jerky/unnatural motion, noise (in 
both the luminance and chrominance channels), and error 
blocks (e.g., what might typically be seen when digital 
transmission errors are present).  This model consists of a 
linear combination of the video quality parameters described 
in section VII.  The General Model produces output values 
that range from zero (no perceived impairment) to 
approximately one (maximum perceived impairment).  The 
General Model values may be multiplied by 100 to 
approximately scale results to the Difference Mean Opinion 
Score (DMOS) derived from the 100-point double stimulus 
continuous quality scale (DSCQS).  The General Model was 
designed using Rec. 601 video that was subjectively evaluated 
at a viewing distance of four to six times picture height.   

The General Video Quality Model (VQM) consists of the 
following linear combination of the seven parameters given in 
section VII: 
VQM = - 0.2097 * si_loss  

+ 0.5969 * hv_loss  
+ 0.2483 * hv_gain  
+ 0.0192 * chroma_spread 
- 2.3416 * si_gain 
+ 0.0431 * ct_ati_gain 
+ 0.0076 * chroma_extreme 

Note that si_loss is always less than or equal to zero, so 
si_loss can only increase VQM.  Since all the other 
parameters are greater than or equal to zero, si_gain is the 
only parameter that can decrease VQM. 

After the contributions of all the parameters are weighted 
and added up, VQM is clipped at a lower threshold of 0.0.  
This prevents si_gain values from producing a quality rating 
that is better than the original (i.e., a negative VQM).  Finally, 
a crushing function that allows a maximum 50% overshoot is 
applied to VQM values over 1.0.  The purpose of the crushing 
function is to limit VQM values for excessively distorted 
video that falls outside the range of the subjective data used to 
develop the model. 

If VQM > 1.0, then VQM = (1 + c)*VQM / (c + VQM), 
where c = 0.5. 

VQM computed in the above manner will have values 
greater than or equal to zero and a nominal maximum value of 
one.  VQM may occasionally exceed one for video scenes that 
are extremely distorted. 

IX. PERFORMANCE 
The fundamental purpose of the General Model and the 

associated calibration routines is to track subjective video 
quality scores.  This ability will be demonstrated by 
comparing General Model results with subjectively rated 
video clips.   

A. Training Data 
The General Model was developed using subjective and 

objective test data from eleven different video quality 
experiments.  These eleven subjective experiments were 
conducted from 1992 to 1999.  All of the data sets were 
collected in accordance with the most recent version of ITU-R 
Recommendation BT.500 [19] or ITU-T Recommendation 
P.910 [20] that was available when the experiment was 
performed.  All of the data sets used scenes from 8 to 10 
seconds in duration.  Nine of the data sets (i.e., data sets one 
to nine) used double stimulus testing where viewers saw both 
the original and processed sequences.  Two of the data sets 
(i.e., data sets ten and eleven) used single stimulus testing 
where viewers saw only the processed sequence.  Seven of the 
data sets were primarily television experiments (i.e., data sets 
one to seven) while four of the data sets were primarily 
videoconferencing experiments (i.e., data sets eight to eleven).  
The subjective scores from each of the subjective data sets 
have been linearly mapped onto a common scale with a 
nominal range of [0,1] using the iterative nested least squares 
algorithm (INLSA) [17] [21] [22] and the seven parameters 
from the General Model.  The reader is directed to [17] for 
more complete descriptions of these subjective experiments. 

Taken together, these experiments include 1536 
subjectively rated video sequences.  Fig. 2 shows the scatter 
plot of subjective quality versus VQM, where each data set’s 
video sequences are plotted in a different color (1 = black, 2 = 
red, 3 = green, 4 = blue, 5 = yellow, 6 = magenta, 7 = cyan, 8 
= gray, 9 = dark red, 10 = copper, 11 = aquamarine).  The Y-
axis of Fig. 2 shows the subjective common scale.  The 
overall Pearson linear correlation coefficient between 
subjective quality and VQM for the video sequences plotted in 
Fig. 2 is 0.948.   
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Fig. 2.  Training data: clip subjective quality vs. clip VQM. 

Fig. 3 shows the effect of averaging over scenes to produce 
a single subjective score (i.e., HRC subjective quality) and 
objective score (i.e., HRC VQM) for each video system.  HRC 
subjective quality is indicative of how the system responds 
(on average) to a set of video scenes.  The overall Pearson 
linear correlation coefficient between HRC subjective quality 
and HRC VQM for the data points in Fig. 3 is 0.980.  For 
making video system (i.e., HRC) comparisons, the estimate of 
HRC subjective quality provided by HRC VQM is more 
accurate than the estimate of clip subjective quality provided 
by clip VQM.  This can be seen by comparing the amount of 
scatter in Fig. 3 with the amount of scatter in Fig. 2.   

 
Fig. 3.  Training data: HRC subjective quality vs. HRC VQM. 

B. Testing Data  
VQEG provides input to standardization bodies responsible 

for producing International Recommendations regarding 

objective video quality metrics.  To that end, VQEG 
performed the FR-TV Phase II test, in 2001 to 2003 [12].  The 
VQEG FR-TV Phase II tests provided an independent 
evaluation of the ability of video quality models and their 
associated calibration algorithms to reproduce subjective 
scores.  This test contained two experiments, one restricted to 
525-line video and the other restricted to 625-line video.  The 
subjective testing was performed by three independent labs.   

The subjective data and VQM for these two experiments 
are plotted in Fig. 4 and Fig. 5.  In the 525-line test, the 
General Model was one of only two models that performed 
statistically better than the other models tested.  The Pearson 
linear correlation was 0.938, and the outlier ratio 0.46.7  In the 
625-line test, the General Model was one of four models that 
performed statistically better than the other models.  The 
Pearson linear correlation was 0.886, and the outlier ratio 
0.31.  No model performed statistically better than the General 
Model in either the 525-line or 625-line test.  All other models 
performed statistically worse than the General Model in either 
the 525-line or the 625-line test or both.   

 

Fig. 4. 525-line VQEG FR-TV Phase II test data:  clip subjective 
quality vs. clip VQM.  

The data depicted in these two scatter plots are identical to 
that reported in [17].  The VQM scores from the General 
Model plotted in the VQEG graphs are not exactly equivalent 
to VQM values as given in section VIII.  This is because the 
VQEG FR-TV Phase II data analysis applied a logistic 
transformation to each objective metric to remove non-
linearities that might be present.  However, the logistic 
transformation had only a minor impact on the VGM values, 
because these values exhibited a near-linear relationship to the 
VQEG FR-TV Phase II subjective test data.  If the logistics 
transformation is not performed, the Pearson linear 
correlations are 0.930 for the 525-line test and 0.865 for the 
625-line test.   

 
7 Outliers are data points with an error in excess of twice the standard error 

of the mean.  The “outlier ratio” is the number of outliers divided by the total 
number of data points. 
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Fig. 5. 625-line VQEG FR-TV Phase II test data:  clip subjective 

quality vs. clip VQM.  

X. CONCLUSION 
We have presented an overview of a general purpose video 

quality model (VQM) and its associated calibration routines.  
This model has been shown by the VQEG FR-TV Phase II 
test to produce excellent estimates of video quality for both 
525-line and 625-line video systems.  In the 525-line test, 
VQM was one of only two models that performed statistically 
better than the other models submitted for independent 
evaluation.  In the 625-line test, VQM was one of four models 
that performed statistically better than the others.  Overall, 
VQM was the only model that performed statistically better 
than the others in both the 525-line and 625-line tests.  
Obtaining an average Pearson correlation coefficient over 
both tests of 0.91, VQM was the only model to break the 0.9 
threshold.  As a result, VQM was standardized by ANSI in 
July 2003 (ANSI T1.801.03-2003), and has been included in 
Draft Recommendations from ITU-T Study Group 9 and ITU-
R Working Party 6Q. 

VQM and its associated automatic calibration algorithms 
have been completely implemented in user friendly software.  
This software is available to all interested parties via a no-cost 
license agreement [23]. 
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